We set a simple goal: to answer most of the questions that you have for free, in a reliable and simple language.

Produce factory special technological equipment for the medical industry and its spare parts

Mass production , also known as flow production or continuous production, is the production of large amounts of standardized products, including and especially on assembly lines. Together with job production and batch production , it is one of the three main production methods. The New York Times used the term in the title of an article that appeared before publication of the Britannica article. The concepts of mass production are applied to various kinds of products, from fluids and particulates handled in bulk such as food , fuel , chemicals , and mined minerals to discrete solid parts such as fasteners to assemblies of such parts such as household appliances and automobiles. Mass production is a diverse field, but it can generally be contrasted with craft production or distributed manufacturing.

VIDEO ON THE TOPIC: Stryker 3D Printing for Artificial Joints; From R&D to Production

Dear readers! Our articles talk about typical ways to resolve Produce factory special technological equipment for the medical industry and its spare parts, but each case is unique.

If you want to know, how to solve your particular problem - contact the online consultant form on the right or call the numbers on the website. It is fast and free!


Advanced Robotics in the Factory of the Future

Like the rest of the world, the factory is rapidly becoming more interconnected. In the factory of the future , data sharing occurs across a complex network of machines, parts, products, and value chain participants, including machinery providers and logistics companies. As a result, today, more than ever, manufacturers face the challenge of securely sharing data within and outside the factory walls.

Traditional databases are not always well suited to the task. But in seeking a solution for specific applications, manufacturers can explore an emerging technology: blockchain. A blockchain is a digital ledger that provides a single, tamperproof version of truth. The technology offers unique advantages in situations where trust is lacking between parties that need to securely capture, store, and share critical data—for instance, data related to intellectual property IP.

Manufacturers can also apply blockchain to develop innovative business models and expand the boundaries of production beyond the traditional factory. For many factory applications, however, blockchain is not the best option. Recently developed central ledger databases that offer some of the features of blockchain are easier to implement and can process more transactions. And other types of databases are appropriate when parties need to store and process large volumes of data in real time.

Equipped with a strong understanding of the opportunities and challenges it faces, the manufacturer can then select the best options from among the available technology solutions.

Unfortunately, these practices typically entail high costs, known as a trust tax. By ensuring trust more efficiently—in addition to conferring other benefits—blockchain reduces the need for these expensive approaches. Here, in basic terms, is how blockchain works: When a participant in the network submits an update to a blockchain ledger, the database uses an automated process to ask other participants to approve the update.

Approved updates are time-stamped, cryptographically signed, and added to the block. The new block becomes part of the blockchain, an immutable record of all transactions and agreements of interest to the participants. The originators of blockchain developed it to provide a technological foundation for digital currency. Early generations of blockchain did not support industrial applications effectively, owing to limitations in network scalability, interoperability, and processing speed.

The versions now under development, however, use new consensus protocols that improve the efficiency of the verification process by increasing the number of transactions per second and reducing computing costs. The improvements under development will enhance interaction between blockchain technology and the Internet of Things IoT —a prerequisite for enabling blockchains to connect networked devices in the factory of the future.

The interaction demands a common technical standard for communication and data transmission. Such a standard will promote levels of interoperability, transparency, and security that are superior to those of existing systems and platforms. But because no common standard exists yet, many blockchain applications have not proceeded beyond the proof-of-concept phase.

For example, the Trusted IoT Alliance, a collaboration among leading technology companies including Bosch and Cisco Systems and numerous startups, is developing an open-source standard for integrating blockchain and the IoT. The standard focuses on a smart-contract interface that allows data to move seamlessly within and between blockchain-enabled systems.

Once established, a standard could be integrated into new factory hardware and software to expand blockchain applications. The recent launch of blockchain as a service BaaS is also helping to smooth the path toward implementation of blockchain in the factory. BaaS offers the same features as a self-managed blockchain such as security for critical data and adds tools that facilitate management and deployment at scale. For many manufacturers, especially those with resource-constrained technology teams, using BaaS will be easier than implementing a self-managed blockchain.

Although blockchain is becoming simpler to deploy in the factory, it is not a panacea for challenges in industrial operations. A case in point is real-time data. For applications that require nearly immediate data exchange, such as the on-line steering of production equipment, the latency time entailed in using blockchain is excessive. In a similar vein, blockchain technology is not suitable for running advanced analytics—a capability of increasing importance in factory operations.

In assessing appropriate opportunities to use blockchain, manufacturers should consider whether other databases are better options. See Exhibit 1. Recently developed central ledger databases offer some of the benefits of blockchain including trust and immutability , although they are applicable to fewer use cases. On the positive side, they are easier to set up and can handle more transactions. Because a trusted central party manages these ledger databases, executing transactions does not require multiparty consensus.

Each type of database has its own tradeoffs in performance and functionality; there is no one-size-fits-all solution. We have selected five use cases for blockchain in the factory of the future to illustrate the many available opportunities.

Three of these use cases help enable other factory-of-the-future applications, while the other two make new business models possible. See Exhibit 2. Companies can use blockchain to exchange data easily, accurately, and securely within complex supply chains.

Blockchain can provide an immutable, permanent digital record of materials, parts, and products, thereby promoting end-to-end visibility and providing a single source of truth to all participants. These benefits are valuable if the supply chain includes multiple participants with independent IT systems, or if there is a lack of trust among participants or a frequent need to onboard new participants. Companies across manufacturing industries face an imperative to protect IP.

Along with cost, IP protection is a critical consideration in decisions about whether to make parts in-house or to buy them from a supplier. One possibility is for a company to use blockchain technology to help prove that it owns IP in the event of a patent dispute.

For instance, Bernstein Technologies has developed a web service that allows users to register IP in a blockchain. The service creates a certificate that proves the existence, integrity, and ownership of the IP. Blockchain is also one of several solutions available to help a company protect and maintain control of IP when monetizing digital assets. For instance, machines connected to a blockchain can produce parts by using digital design files included in the database.

The company that owns the IP uses a licensing model to make the proprietary information available through the blockchain to the company that produces the part. By using blockchain to support quality control, a company can enhance value for customers, another primary objective of the factory of the future.

Today, in the absence of blockchain, offering full transparency and complete documentation to customers with regard to the quality of processes and products requires costly support from central parties that operate IT platforms.

In addition to helping customers track and trace inbound parts along a supply chain, blockchain creates immutable documentation of quality checks and production process data.

The database uniquely tags each product and automatically inscribes every transaction, modification, or quality check on the blockchain. To enable this application, the production setup must include automated quality checks that generate and write measurements directly to the blockchain.

This use case supports multiparty access to data and can eliminate the need for inbound quality control to verify checks that the supplier performs. It may also reduce the need for audits by original-equipment manufacturers or central authorities to verify quality controls.

One example of how manufacturers can use blockchain to control their products after production involves cost and performance management. Blockchain can provide a flexible, comprehensive system—not owned by a single manufacturer, supplier, or operator—for logging and tracking all relevant information about parts. This includes data about raw materials, usage if logged by embedded IoT capabilities , maintenance cycles, and performance testing.

Participants gain access to a complete, auditable log of a particular part. In the aircraft industry, for example, Boeing is currently in an early stage of developing a business intelligence platform for cost and performance optimization.

The main challenge in using blockchain for quality checks involves ensuring trust by linking a physical object to its digital replica known as a digital twin. This connection must either prevent or reveal any human interference that alters information. To help create such a connection and maintain an accurate digital twin, more and more devices will contain sensors that can communicate with blockchains.

Blockchain expands the possibilities for using an innovative pay-per-use model for machinery, known as machines as a service MaaS.

For example, instead of selling a compressor, the machinery provider sells compressed air by volume. By relying on MaaS rather than owned machines, manufacturers can avoid large upfront investments and can easily upgrade equipment to gain access to the latest technology.

Applied effectively, the MaaS model enables manufacturers to increase their production flexibility. Today, MaaS is limited to easy-to-measure applications. But blockchain can support more complex MaaS applications by facilitating IP protection, documentation management, and performance tracking.

For example, by inputting its operational parameters such as overall equipment effectiveness and consumables usage into the blockchain, a machine can automatically trigger a payment by the manufacturer that is using the equipment. Blockchain can also enable users to activate built-in features on demand.

Companies are currently testing the use of blockchain for automated MaaS payment systems. Blockchain can support new maintenance approaches such as automated service agreements and shorter maintenance times. These innovations are necessary to manage the greater complexity and technological sophistication of advanced production machinery.

To facilitate outsourced maintenance, users append service agreements and installation documentation related to each device to the blockchain record, creating a digital twin of the device. Blockchain technology can then enable the automated execution of and payment for scheduled maintenance. A machine that requires maintenance can trigger a service request and generate a smart contract for the work or for a replacement part. Upon fulfillment of the order, payment processing occurs automatically.

Similarly, immutable documentation of the maintenance history is appended to the blockchain record. Such applications, which are still in the early development phase, improve the reliability of equipment, facilitate the monitoring of equipment health and attrition, and create auditable health assessments of the machinery.

In addition, in the context of maintenance performed by in-house teams, the blockchain record can serve as proof to equipment providers that the team has executed maintenance in accordance with requirements set out in the warranty and guarantee agreements.

Immutable documentation of maintenance history also facilitates the sale of used equipment. In the future, shorter product life cycles and rapid design changes will motivate manufacturers to upgrade their machinery more frequently. When selling used equipment, a manufacturer can direct prospective buyers to the blockchain record for evidence that it has properly maintained the equipment. Envisioning these use cases in a shared factory for additive manufacturing AM illustrates the potential of blockchain.

Until recently, companies primarily used AM either for prototyping or for manufacturing low-volume parts. Today, however, they are more widely adopting AM in industrial manufacturing processes.

As manufacturers ramp up their use of printed parts, outsourcing to a shared AM factory offers an attractive way to optimize the cost, speed, and feasibility of production.

For example, manufacturers can print and obtain spare parts faster and can produce unique or low-volume parts more economically. But before they can use outsourced AM, manufacturers must overcome several obstacles. These include protecting IP, creating direct digital connections with the AM factory, and ensuring adherence to quality and process standards. Today, manufacturers generally rely on an intermediary referred to as a 3D printing platform to overcome these obstacles and identify the best print shop or service bureau for making a part.

An automated blockchain bidding platform that uses smart contracts eliminates the need for support from 3D printing platforms.

Blockchain in the Factory of the Future

For many industrial manufacturers, what was once a clear path to success is now fraught with uncertainty. Making equipment for a wide array of industrial activities — such as big construction projects, large industrial facilities, oil and gas fields, and refineries — has for years been difficult to navigate, but major companies often used their size to sidestep obstacles. The strength of having multiple product lines covering the full gamut of industrial operations frequently allowed industrial manufacturers to eke out profits from some segment of their customer base even as slowdowns imperiled other sectors.

There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective.

Zhejiang Valiant Power Technology Co. Huzhou, Zhejiang, China. South China Insurance Co. Up to the end of , it have more than staffs, possesses RMB million total assets. With more than 10 years experience in manufacturing these agricultural machinery, now we are becoming one of the most important exporter and manufacturer in this field in China.

The road ahead

This site uses cookies in order to improve your user experience and to provide content tailored specifically to your interests. Detailed information on the use of cookies on this website is provided in our Privacy Policy. You can also manage your preferences there. By using this website, you consent to the use of cookies. It looks like you are using a browser that is not fully supported. Please note that there might be constraints on site display and usability. For the best experience we suggest that you download the newest version of a supported browser:. This page requires JavaScript in order to be fully functional and displayed correctly.

How 3D Printing Is Changing Production Models

Medical Supplies B2b. We are a fast-growing medical apparatus provider for healthcare institutes in Malaysia. We use both internal and external data sources for segmentation data on business customers. Our team members, competency, inventory, systems and programs are focused on these customer segments, along with fulfillment for all the United States with patient specific shipping programs and direct to consumer orders.

Rexroth eoc.

Like the rest of the world, the factory is rapidly becoming more interconnected. In the factory of the future , data sharing occurs across a complex network of machines, parts, products, and value chain participants, including machinery providers and logistics companies. As a result, today, more than ever, manufacturers face the challenge of securely sharing data within and outside the factory walls. Traditional databases are not always well suited to the task.

China Company Ltd

From heat-shrink tubing to multi-lumen tubing to ultra-thin PTFE liners, we produce extrusion with outstanding tolerance control, length accuracy, and concentricity. Meaning, OEM skid equipment is not built to act as a true slave or servant to the overall process coordinator or master controller. Today flowcharts should present the desired flow of the process without the exceptions. All of the layers together are just a tenth of a millimeter thick — making them no thicker than a human hair.

Advanced robotics systems are ready to transform industrial operations. Compared with conventional robots, advanced robots have superior perception, integrability, adaptability, and mobility. These improvements permit faster setup, commissioning, and reconfiguration, as well as more efficient and stable operations. The cost of this sophisticated equipment will decline as prices for sensors and computing power decrease, and as software increasingly replaces hardware as the primary driver of functionality. Taken together, these improvements mean that advanced robots will be able to perform many tasks more economically than the previous generation of automated systems.

Dürr (Thailand) Co., Ltd.

Cookies help us to provide you with an excellent service. By using our website, you declare yourself in agreement with our use of cookies. Got It. All rights reserved. Use of this constitutes acceptance of our privacy policy The material on this site may not be reproduced, distributed, transmitted, or otherwise used, except with the prior written permission of Rodman Media. Login Join. Subscribe Free Magazine eNewsletter. Celli Nonwovens.

May 8, - Major suppliers of nonwovens machinery offer new technological developments. spunlace and airlaid nonwovens roll goods production with a special production and assembly equipment in order to strengthen its market position. energy requirements and reduced spare parts, the technology fully.

China Company Ltd. In addition, we partner with manufacturers from all over the world to market and sell their products across Europe, and some Globally. Business CPP delivers green oil and gas facilities, serving our clients with responsiveness and integrity. Founded in ,Kangtai Industry has been cooperating with Panasonic for over 30 years and is still its biggest and most important massage product OEM supplier in China.

Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective

Below you find business- and career opportunities in Jinan in the electronic information sector. When you want to know more about the company, which is looking for cooperation or talent, contact us and we will come back to you soon. The company is one of the largest manufacturers of refrigerated refrigerated display cabinet in China at present.

Additive Manufacturing: Siemens uses innovative technology to produce gas turbines

Additive manufacturing is no longer just for prototypes. Its increasing popularity and technical capabilities have pushed it into position to change the way manufacturers manage their spare parts inventory. No matter how technologies change, or what new innovations break into the mainstream, the basic goals of manufacturing remain the same: Reduce unplanned downtime, reduce costs, eliminate unnecessary waste, etc.

Account Options Anmelden. E-Book — kostenlos.

The Scheme aims at facilitating technology upgradation by providing upfront capital subsidy to SSI units, including tiny, khadi, village and coir industrial units, on institutional finance credit availed of by them for modernisation of their production equipment plant and machinery and techniques. The eligible amount of subsidy calculated under the pre-revised scheme was based on the actual loan amount not exceeding Rs. It is in this background that the Finance Minister made an announcement in the Budget Speech of to raise the ceiling for loans under the Scheme from Rs. Further, in the light of the experience gathered in implementing the Scheme, certain other modifications were also required to make it more useful to the SSI units, including tiny, khadi, village and coir industrial units, in taking up technology upgradation on a larger scale.

Medical Supplies B2b

Last Updated: October Summary Market Entry. Current Market Trends. Main Competitors. Registration Process. Barriers Reimbursement Government Procurement.

How to plan for the challenges of bringing a facility into routine operation. The transition from construction to operation is the commissioning and startup. Processing plant commissioning embraces activities such as cleaning, flushing, verifications, leak tests, performance evaluation and functional tests essential for bringing a newly installed plant or facility into routine operation.

Comments 1
Thanks! Your comment will appear after verification.
Add a comment

  1. Dailkis

    It only reserve, no more